Receptive fields and response properties of neurons in the star-nosed mole's somatosensory fovea.

نویسندگان

  • Robert N S Sachdev
  • Kenneth C Catania
چکیده

Star-nosed moles have an extraordinary mechanosensory system consisting of 22 densely innervated nasal appendages covered with thousands of sensitive touch domes. A single appendage acts as the fovea and the star is constantly shifted to touch this foveal appendage to objects of interest. Here we investigated the receptive fields on the star and the response properties of 144 neurons in the mole's primary somatosensory cortex (S1). Excitatory receptive fields were defined by recording multiunit activity from the S1 representations of the nasal appendages that form the star, while stimulating the touch domes on the skin surface with a small probe. Receptive fields were among the smallest reported for mammalian glabrous skin, averaging <1 mm(2). The smallest receptive fields were found for the fovea representation, corresponding to its greater cortical magnification. Single units were then isolated, primarily from the representation of the somatosensory fovea, and the skin surface was stimulated with a small probe attached to a piezoelectric wafer controlled by a computer interface. The response properties of neurons and the locations of inhibitory surrounds were evaluated with two complementary approaches. In the first set of experiments, single microelectrodes were used to isolate unit activity in S1, and data were collected for stimulation to different areas of the sensory star. In the second set of experiments, a multi-electrode array (4 electrodes spaced at 200 microm in a linear sequence) was used to simultaneously record from isolated units in different cortical areas representing different parts of the sensory periphery. These experiments revealed a short-latency excitatory discharge to stimulation of the fovea followed by a long-lasting suppression of spontaneous activity. Sixty-one percent of neurons responded with an excitatory OFF response at the end of the stimulus; the remaining 39% of cells did not respond or were inhibited at stimulus offset. Stimulation of areas surrounding the central receptive field often revealed inhibitory surrounds. Forty percent of the neurons that responded to mechanosensory stimulation of the receptive field center were inhibited by stimulation of surrounding areas of skin on the same appendage. In contrast to neurons in rodent barrels, few neurons within a stripe representing an appendage responded to stimulation of neighboring (nonprimary) appendages on the snout. The small receptive fields, short latencies, and inhibitory surrounds are consistent with the star's role in rapidly determining the locations and identities of objects in a complex tactile environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The sense of touch in the star-nosed mole: from mechanoreceptors to the brain.

Star-nosed moles are somatosensory specialists that explore their environment with 22 appendages that ring their nostrils. The appendages are covered with sensory domes called Eimer's organs. Each organ is associated with a Merkel cell-neurite complex, a lamellated corpuscle, and a series of 5-10 free nerve endings that form a circle of terminal swellings. Anatomy and electrophysiological recor...

متن کامل

Effects of stimulus duration on neuronal response properties in the somatosensory cortex of the star-nosed mole.

Star-nosed moles have a series of mechanosensory appendages surrounding each nostril. Each appendage is covered with sensory organs (Eimer's organs) containing both rapidly adapting and slowly adapting mechanoreceptors and each appendage is represented in primary somatosensory cortex (S1) by a single cortical module. When the skin surface of an appendage is depressed, neurons in the correspondi...

متن کامل

Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex

Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...

متن کامل

Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.

The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...

متن کامل

Neuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats

Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2002